136. Angelbello AJ, Rzuczek SG, Mckee KK, Chen JL, Olafson H, Cameron MD, Moss WN, Wang ET, Disney MD. Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model. Proceedings from the National Academy of Sciences (USA), (2019), pii: 201901484. doi: 10.1073/pnas.1901484116. PubMed Central PMID: 30926669.

135. Angelbello AJ, Chen JL, Disney MD. Small molecule targeting of RNA structures in neurological disorders. Annals of the New York Academy of Sciences, (2019), in print. doi: 10.1111/nyas.14051. PubMed Central PMID: 30964958.

134. Velagapudi SP, Li Y, Disney MD. A cross-linking approach to map small molecule-RNA binding sites in cells. Bioorganic Medicinal Chemistry Letters, (2019), in print. doi: 10.1016/j.bmcl.2019.04.001. PubMed Central PMID: 30987892.

133. Disney MD. Perspectives on targeting RNA with small molecules to capture opportunities at the intersection of chemistry, biology, and medicine. Journal of the American Chemical Society, (2019), in print. doi: 10.1021/jacs.8b13419. PubMed Central PMID: 30896935.

132. Chew J, Cook C, Gendron TF, Jansen-West K, Del Rosso G, Daughrity LM, Castanedes-Casey M, Kurti A, Stankowski JN, Disney MD, Rothstein JD, Dickson DW, Fryer JD, Zhang YJ, Petrucelli L. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Molecular Neurodegeneration, (2019), 14, 9. doi: 10.1186/s13024-019-0310-z. PubMed Central PMCID: PMC6377782.

131. Costales MG, Hoch DG, Abegg D, Childs-Disney JL, Velagapudi SP, Adibekian A, Disney MD. A designed small molecule inhibitor of a non-coding RNA sensitizes HER2 negative cancers to Herceptin. Journal of the American Chemical Society, (2019), 141, 2960-2974. doi: 10.1021/jacs.8b10558. PubMed Central PMCID: PMC6400281.

130. Wales DJ, Disney MD, Yildirim I. Computational investigation of RNA A-bulges related to microtubule- associated protein Tau causing frontotemporal dementia and Parkinsonism. Journal of Physical Chemistry B, (2019), 123, 57-65. doi: 10.1021/acs.jpcb.8b09139. PubMed Central PMCID: PMC6465094.

129. Wang Z-F,Ursu A, Childs-Disney JL, Guertler R, Yang W-Y, Bernat V, Rzuczek SG, Fuerst R, Zhang Y-J, Gendron TF, Dwyer BG, Rice JE, Petrucelli L, and Disney MD. The hairpin form of r(G4C2)expin c9ALS/FTD is repeat-associated non-ATG translation and a target for bioactive small molecules.  Cell Chemical Biology, (2019), 26, 179-190.e12. doi: 10.1016/j.chembiol.2018.10.018. PubMed Central PMCID: PMC6386614.

128. Disney MD, Dwyer BG, Childs-Disney JL. Drugging the RNA world. Cold Spring Harbor Perspectives in Biology, (2018), 10, pii: a034769. doi: 10.1101/cshperspect.a034769. PubMed Central PMCID: PMC6211391.

127. Disney MD. Introduction to the symposium in print for Laura Kiessling. Bioorganic Medicinal Chemistry Letters, (2018), 26. doi: 10.1016/j.bmc.2018.10.021. PubMed PMID: 30420097.

126. Li Y, Disney MD. Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype. ACS Chemical Biology, (2018), 13, 3065–3071. doi: 10.1021/acschembio.8b00827. PubMed Central PMCID: PMC6340300.

 125. Childs-Disney JL, Tran T, Vummidi BR, Velagapudi SP, Haniff HS, Matsumoto Y, Crynen G, Souther M, Biswas A, Wang Z-F, Tellinghuisen TL, and Disney MDA massively parallel selection of small molecule-RNA motif binding partners informs the design of an antiviral from sequence. Chem, (2018), 4, 2384-2404. doi: 10.1016/j.chempr.2018.08.003. PubMed Central PMCID: PMC6358276.

124. Velagapudi SP, Costales MG, Vummidi BR, Nakai Y, Angelbello AJ, Tran T, Haniff HS, Matsumoto Y, Wang ZF, Chatterjee AK, Childs-Disney JL, Disney MD. Approved anti-cancer drugs target oncogenic non-coding RNAs. Cell Chemical Biology, (2018), 25, 1086-1094.e7. doi: 10.1016/j.chembiol.2018.05.015. PubMed Central PMCID: PMC6334646.

123. Disney MD, Janda KD. Introduction. Bioorganic Medicinal Chemistry Letters, (2018), 28, 2661-2662. doi: 10.1016/j.bmcl.2018.07.013. PubMed PMID: 30029841.

122. Haniff HS, Graves A,Disney MD. Selective small molecule recognition of RNA base pairs. ACS Combinatorial Science, (2018), 20, 482-491. doi: 10.1021/acscombsci.8b00049. PubMed Central PMCID: PMC6325646.

121. Costales MG, Matsumoto Y, Velagapudi SP, Disney MDSmall molecule targeted recruitment of a nuclease to RNA. Journal of the American Chemical Society, (2018), 140, 6741-6744. doi: 10.1021/jacs.8b01233. PubMed Central PMCID: PMC6100793.

120. Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MDUsing genome sequence to enable the design of medicines and chemical probes. Chemical Reviews, (2018), 118, 1599-1663.doi: 10.1021/acs.chemrev.7b00504. PubMed Central PMCID: PMC5989578.

119. Angelbello AJ, Disney MD. Bleomycin can cleave an oncogenic noncoding RNA. Chembiochem, (2018), 19,43-47. doi: 10.1002/cbic.201700581. PubMed Central PMCID: PMC5810124.

118. Guan L, Luo Y, Ja WW, Disney MD. Small molecule alteration of RNA sequence in cells and animals. Bioorganic & Medicinal Chemistry Letters, (2018), 28, 2794-2796. doi: 10.1016/j.bmcl.2017.10.034. PubMed Central PMCID: PMC5906209.

117. Chen JL, VanEtten DM, Fountain MA, Yildirim I, Disney MD. Structure and dynamics of RNA repeat expansions that cause Huntington’s disease and myotonic dystrophy type 1. Biochemistry, (2017), 56, 3463-3474. doi: 10.1021/acs.biochem.7b00252. PubMed Central PMCID: PMC5810133.

116. Disney MDInhibiting translation one protein at a time. Trends in Biochemical Sciences, (2017), 42, 412-413. doi: 10.1016/j.tibs.2017.04.008. PubMed PMID: 28522328.

115. Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ, Prudencio M, Carlomagno Y, Daughrity LM, ansen-West K, Perkerson EA, O’Raw A, Cook C, Pregent L, Belzil V, van Blitterswijk M, Tabassian LJ, Lee CW, Yue M, Tong J, Song Y, Castanedes-Casey M, Rousseau L, Phillips V, Dickson DW, Rademakers R, Fryer JD, Rush BK, Pedraza O, Caputo AM, Desaro P, Palmucci C, Robertson A, Heckman MG, Diehl NN, Wiggs E, Tierney M, Braun L, Farren J, Lacomis D, Ladha S, Fournier CN, McCluskey LF, Elman LB, Toledo JB, McBride JD, Tiloca C, Morelli C, Poletti B, Solca F, Prelle A, Wuu J, Jockel-Balsarotti J, Rigo F, Ambrose C, Datta A, Yang W, Raitcheva D, Antognetti G, McCampbell A, Van Swieten JC, Miller BL, Boxer AL, Brown RH, Bowser R, Miller TM, Trojanowski JQ, Grossman M, Berry JD, Hu WT, Ratti A, Traynor BJ, Disney MD, Benatar M, Silani V, Glass JD, Floeter MK, Rothstein JD, Boylan KB, Petrucelli L. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Science Translational Medicine, (2017), 9, pii: eaai7866. doi: 10.1126/scitranslmed.aai7866. PubMed Central PMCID: PMC5576451.

114. Velagapudi SP, Luo Y, Tran T, Haniff HS, Nakai Y, Fallahi M, Martinez GJ, Childs-Disney JL, Disney MD. Defining RNA-small molecule affinity landscapes enables design of a small molecule inhibitor of an oncogenic non-coding RNA. ACS Central Science, (2017), 3, 205-216. doi: 10.1021/acscentsci.7b00009. PubMed Central PMCID: PMC5364451.

113. Costales MG, Haga CL, Velagapudi SP, Childs-Disney JL, Phinney DG, Disney MD. Small molecule inhibition of microRNA-210 reprograms an oncogenic hypoxic circuit. Journal of the American Chemical Society, (2017), 139, 3446-3455. doi: 10.1021/jacs.6b11273. PubMed Central PMCID: PMC5810126.

112. Costales, M.G., Childs-Disney, J.L., Disney, MDComputational tools for design of selective small molecules targeting RNA: from small molecule microarrays to chemical similarity searching. In: Garner A. (eds) RNA Therapeutics. Topics in Medicinal Chemistry, (2017), vol 27. Springer, Cham. doi:

111. Haga CL, Velagapudi SP, Childs-Disney JL, Disney MD* and Phinney DG* (denotes co-corresponding authors).  Rapid generation of miRNA inhibitor leads by bio-informatics and efficient high-throughput screening methods. Methods in Molecular Biology, (2017), 1517, 179-198. PubMed PMID: 27924483.

110. Disney, MD and Angelbello, AJ. Rational design of small molecules targeting oncogenic noncoding RNAs from sequence.  Accounts of Chemical Research, (2016), 49, 2698-2704.PubMed Central PMCID: PMC5286924.

109. Rzuczek SG, Colgan LA, Nakai Y, Cameron DM, Furling D, Yasuda R, Disney MD.  Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nature Chemical Biology, (2017), 13, 188-193. doi: 10.1038/nchembio.2251. PubMed Central PMCID: PMC5290590.

108. Angelbello AJ, Gonzalez AL, Rzuczek SG, Disney MD.  Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1. Bioorganic Medicinal Chemistry Letters, (2016), 26, 5792-5796.doi: 10.1016/j.bmcl.2016.10.037. PubMed Central PMCID: PMC5286915.

107. Park H, Tran T, Lee JH, Park H, Disney MDControlled dehydration improves the diffraction quality of two RNA crystals.  BMC Structural Biology, (2016),16, 19. PubMed Central PMCID: PMC5093936.

106. Yang W-Y, He F, Strack RL, Oh S-Y, Frazer M, Jaffrey SR, Todd PK, Disney MD. Small molecule recognition and tools to study modulation of r(CGG)exp in fragile X-associated tremor ataxia syndrome. ACS ChemicalBiology, (2016), 11, 2456-2465.doi: 10.1021/acschembio.6b00147. PubMed Central PMCID: PMC5549791.

105. Disney MD.  Chemistry and chemical biology of therapeutically important compounds. Bioorganic Medicinal Chemistry, (2016), 24, 3875. doi: 10.1016/j.bmc.2016.06.049. PubMed PMID: 27460698.

104. Rzuczek SG, Park HJ, Disney MD. Corrigendum: a toxic RNA catalyzes the in cellulo synthesis of its own inhibitor. Angewandte Chemie International Edition, (2016), 55, 9817-9817. doi: 10.1002/anie.201605756. PubMed PMID: 27503420.

103. Rzuczek SG, Park HJ, Disney MD. Berichtigung: a toxic RNA catalyzes the in cellulo synthesis of its own inhibitorAngewandte Chemie, (2016), 128, 9971-9971.

102. Disney MD, Winkelsas, A, Velagapudi S, Southern M, Fallahi M, Childs-Disney JL. Inforna 2.0: a platform for the sequence-based design of small molecules targeting structured RNAs. ACS Chemical Biology, (2016),11, 1720-1728. doi: 10.1021/acschembio.6b00001. PubMed Central PMCID:PMC4912454.

101. Yang W-Y, Gao R, Southern M, Sarkar P, Disney MD. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10. Nature Communications, (2016),7, 11647.doi: 10.1038/ncomms11647. PubMed Central PMCID:PMC4895354.

100. Costales MG, Rzuczek SG, Disney MD. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA. Bioorganic & Medicinal Chemistry Letters, (2016),26, 2605-2609.doi: 10.1016/j.bmcl.2016.04.025.PubMed PMID:27117425.

99. Velagapudi SP, Cameron MD, Haga CL, Rosenberg LH, Lafitte M, Duckett D, Phinney DG, Disney MDDesign of a small molecule against an oncogenic non-coding RNA.  Proc Natl Acad Sci U S A. 2016 May 24; 113(21):5898-903. doi: 10.1073/pnas.1523975113.

98. Liu B, Childs-Disney JL, Znosko BM, Wang D, Fallahi M, Gallo SM, Disney MD. Analysis of secondary structural elements in human microRNA hairpin precursors. BMC Bioinformatics. 2016 March 1; 17(1):112. doi: 10.1186/s12859-016-0960-6.

97. Childs-Disney JL, Disney MD Small molecule targeting of a microRNA associated with hepatocellular carcinoma.  ACS Chemical Biology. ACS Chem Biol. 2016 Feb 19; 11(2):375-80. doi: 10.1021/acschembio.5b00615.

96. *Garbaccio RM, Johnson DS, Hong J, Disney MDPreface. to 25th Anniversary Special Issue: Recent Advances in Medicinal Chemistry and Chemical Biology.  Bioorganic Medicinal Chemistry Letters, (2015), 25, 4714. doi: 10.1016/j.bmcl.2015.08.083.

95. Childs-Disney JL, Disney MDApproaches to validate and manipulate RNA targets with small molecules in cells.  Annu Rev Pharmacol Toxicol. 2015 October 22; 56:123-40. doi: 10.1146/annurev-pharmtox-010715-103910. Review.

94. Haga CL, Velagapudi SP, Strivelli JR, Yang WY, Disney MD, Phinney DG.  Small molecule inhibition of miR-544 biogenesis disrupts adaptive responses to hypoxia by modulating ATM-mTOR signaling.  ACS Chem Biol. 2015 Oct 16; 10(10):2267-76. doi: 10.1021/acschembio.5b00265.

93. Yildirim I, Chakraborty D, Disney MD, Wales DJ, Schatz GC. Computational investigation of RNA CUG repeats responsible for myotonic dystrophy 1. J Chem Theory Comput. 2015 Oct 13; 11(10):4943-4958.

92. Rzuczek SG, Southern MR, Disney MDStudying a drug-like, RNA-focused small molecule library identifies compounds that inhibit RNA toxicity in myotonic dystrophy.  ACS Chemical Biology. 2015 September 28; 10.1021/acschembio.5b00430.

91. Bernat V, Disney MDRNA structures as mediators of neurological diseases and as drug targets. Neuron. 2015 Jul 1; 87(1):28-46. doi: 10.1016/j.neuron.2015.06.012.

90. Park H, González ÀL, Yildirim I, Tran T, Lohman JR, Fang P, Guo M, Disney MDCrystallographic and computational analyses of AUUCU repeating RNA that causes spinocerebellar ataxia type 10 (SCA10).  Biochemistry. 2015 Jun 23; 54(24):3851-9. doi: 10.1021/acs.biochem.5b00551.

89. Yang WY, Wilson HD, Velagapudi SP, Disney MDInhibition of non-ATG translational events in cells via covalent small molecules targeting RNA.  J Am Chem Soc. 2015 Apr 29; 137(16):5336-45. doi: 10.1021/ja507448y.

88. Velagapudi SP, Vummidi BR, Disney MDSmall molecule chemical probes of microRNA function.  Curr Opin Chem Biol. 2015 Feb; 24:97-103. doi: 10.1016/j.cbpa.2014.10.024.

87. Luo Y, Disney MD. Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA. ChemBioChem. 2014 September 22; 15, 2041-4.

86. Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J, Yang W-Y, Fostvedt E, Jansen-West K, Belzil VV, Desaro P, Johnston A, Overstreet K, Boeve BF, Dickson D, Floeter MK, Traynor BJ, Morelli C, Ratti A, Silani V, Rademakers R, Brown RH, Rothstein JD, Boylan KB, Petrucelli L*, Disney MD*. Biomarker and lead small molecule discovery to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron. 2014 September 3; 83, 1043-50.

85. Rzuczek SG, Park H, Disney MD. A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor. Angewandte Chemie. 2014 August 22; 53, 10956-9.

84. Hoskins JW, Ofori LO, Chen CZ, Kumar A, Sobczak K, Nakamori M, Southall N, Patnaik S, Marugan JJ, Zheng W, Austin CP, Disney MD, Miller BL, Thornton CA. Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects. Nucleic Acids Research. 2014 April 20; 42, 6591-602.

83. Velagapudi SP, Disney MDTwo-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor.  Chemical Communications. 2014 March 21; 50, 3027-9. doi: 10.1039/c3cc00173c.

82. Colak D, Zaninovic N, Cohen MS, Rosenwaks Z, Yang WY, Gerhardt J, Disney MD, Jaffrey SR. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science. 2014 February 28; 343, 1002-5.

81. Tran T, Childs-Disney JL, Liu B, Guan L, Rzuczek S, Disney MDTargeting the r(CGG) Repeats That Cause FXTAS with Modularly Assembled Small Molecules and Oligonucleotides. ACS Chemical Biology. 2014 February 7; 9, 904-12.

80. Velagapudi SP, Gallo SM, Disney MD.  Sequence-based design of bioactive small molecules that target precursor microRNAs.  Nature Chemical Biology. 2014 February 9; 10, 291-7. doi: 10.1038/nchembio.1452.

79. Childs-Disney JL, Yildirim I, Park H, Lohman JR, Guan L, Tran T, Sarkar P, Schatz GC, Disney MD.  Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity.  ACS Chemical Biology. 2013 December 9; 9, 538-50.

78. Disney MDRational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts. Drug Discovery Today. 2013 December; 18, 1228-36.

77. Disney MD, Yildirim I, and Childs-Disney JL.  Methods to enable the design of bioactive small molecules targeting RNA. Organic and Biomolecular Chemistry. 2013 November 21; 12, 1029-39.

76. Guan L, Disney MD Covalent small molecule-RNA complex formation enables cellular profiling of small molecule-RNA interactions. Angewandte Chemie International Edition, English. 2013 August 1; 52, 10010-3.

75. Velagapudi SP, Disney MD.  Defining RNA motif-aminoglycoside interactions via two-dimensional combinatorial screening (2DCS) and structure-activity relationships through sequencing. Bioorganic and Medicinal Chemistry. 2013 October 15; 21, 6132-8.

 Special issue on Nucleic Acids.

74. Strack RL, Disney MD, Jaffrey SR. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA.  Nature Methods. 2013 October 27; 10, 1219-24.

73. Rzuczek SG, Gao Y, Tang ZZ, Thornton CA, Kodadek T, Disney MDFeatures of modularly assembled compounds that impart bioactivity against an RNA target.  ACS Chemical Biology. 2013 September 13; 8, 2312-21.

72.  Childs-Disney JL, Stepniak-Konieczna E, Tran T, Yildirim I, Park H, Chen CZ, Hoskins J, Southall N, Marugan JJ, Patnaik S, Zheng W, Austin CP, Schatz GC, Sobczak K, Thornton CA, Disney MD.  Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nature Communications. 2013 June 28; 4, 2044.

71. Velagapudi SP, Disney MD.  Identifying And Characterizing RNA-Ligand Interactions Using 2-Dimensional Combinatorial Screening and Structure-Activity Relationships Through Sequencing.  In Methods for Studying Nucleic Acid/drug Interactions, (2012), CRC Press; Taylor & Francis Group, Boca Raton, FL, ISBN-10: 1439839735, ISBN-13: 978-1439839737.

70.  Sellier C, Freyermuth F, Tabet R, Tran T, He F, Ruffenach F, Alunni V, Moine H, Thibault C, Page A, Tassone F, Willemsen R, Disney MD, Hagerman PJ, Todd PK, Charlet-Berguerand N. Sequestration of DROSHA and DGCR8 by expanded CGG-repeats RNA alters microRNA processing in Fragile X-Associated Tremor/Ataxia Syndrome. Cell Reports. 2013 March 28; 3, 869-80.

69.  Yildirim I, Park H, Disney MD, Schatz GC. A Dynamic Structural Model of Expanded RNA CAG Repeats: A Refined X-ray Structure and Computational Investigations Using Molecular Dynamics and Umbrella Sampling Simulations.  Journal of the American Chemical Society (2013), 135, 3528-38.

68. Guan L, Disney MD. Small-molecule-mediated cleavage of RNA in living cells. Angew Chem Int Ed Engl. 2013 Jan 28;52(5):1462-5. doi: 10.1002/anie.201206888. Epub 2012 Dec 20.

67. Childs-Disney JL, Stepniak-Konieczna E, Tran T, Yildirim I, Park H, Chen CZ, Hoskins J, Southall N, Marugan JJ, Patnaik S, Zheng W, Austin CP, Schatz GC, Sobczak K, Thornton CA, Disney MD. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nat Commun. 2013;4:2044. doi: 10.1038/ncomms3044.

66.  Childs-Disney JL, Parkesh R, Nakamori M, Thornton CA, Disney MDRational Design of Bioactive, Modularly Assembled Aminoglycosides Targeting the RNA that Causes Myotonic Dystrophy Type 1.  ACS Chemical Biology (2012), 7, 1984-93.

65.  Velagapudi SP, Pushechnikov P, Labuda LP, French JM, Disney MD.  Probing a 2-Aminobenzimidazole Library for Binding to RNA Internal Loops via Two-Dimensional Combinatorial Screening.  ACS Chemical Biology (2012), 7, 1902-9.

64.  Disney MD, Liu B, Yang WY, Sellier C, Tran T, Charlet-Berguerand N, Childs-Disney JL.  A Small Molecule That Targets r(CGG)(exp) and Improves Defects in Fragile X-Associated Tremor Ataxia Syndrome.  ACS Chemical Biology (2012), 7, 1711-8.

63.   Childs‐Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD.  Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.  ACS Chemical Biology (2012), 7, 856-62.

62.   Kumar A, Parkesh R, Sznajder LJ, Childs‐Disney JL, Sobczak K, Disney MDChemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts.  ACS Chemical Biology (2012), 7, 496-505.

61.   Parkesh R, Childs‐Disney JL, Nakamori M, Kumar A, Wang E, Wang T, Hoskins J, Tran T, Housman D, Thornton CA, Disney MD.  Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching.  J Am Chem Soc. (2012), 134, 4731-42.

60.  Guan L, Disney MD.  Recent advances in developing small molecules targeting RNA.  ACS Chemical Biology (2012), 7, 73-86.

59.   Disney MDStudying modification of aminoglycoside antibiotics by resistance-causing enzymes via microarray.  Methods In Molecular Biology (2012), 808, 303-20.

58.  Tran T, Disney MDIdentifying the Preferred RNA Motifs and Chemotypes that Interact by Probing Millions of Combinations.  Nature Communications, (2012), 3, 1125.

57. Kumar A, Park H, Fang P, Parkesh R, Guo M, Nettles KW, Disney MD. Myotonic dystrophy type 1 RNA crystal structures reveal heterogeneous 1 × 1 nucleotide UU internal loop conformations. Biochemistry. 2011 Nov 15;50(45):9928-35. doi: 10.1021/bi2013068. Epub 2011 Oct 20. PubMed PMID: 21988728; PubMed Central PMCID: PMC3218087.

56.   Childs-Disney JL, Tsitovich PB, Disney MDUsing Modularly Assembled Ligands To Bind RNA Internal Loops Separated by Different Distances.  ChemBioChem (2011), 12, 2143-2146. PMCID: PMC3378996

55.   Kumar A, Fang P, Park H, Guo M, Nettles K, Disney MD.  A Crystal Structure of a Model of the Repeating r(CGG) Transcript Found in Fragile X Syndrome.  ChemBioChem (2011), 12, 2140-2142. PMCID: PMC3379549

54.   Lee MM, Disney MD.  Influencing Uptake and Localization of Aminoglycoside-Functionalized Peptoids.  Molecular Biosystems (2011), 7, 2441-51. PMCID: PMC3135690

53.   Velagapudi SP, Seedhouse S, French J, Disney MDDefining the RNA Internal Loops Preferred by Drug-Like Ligands via Two-Dimensional Combinatorial Screening. Journal of the American Chemical Society (2011), 133, 10111-8. PMCID: PMC3126894

52.   Tran T, Disney MDMolecular Recognition of 6’-N-5-Hexynoate Kanamycin A and RNA 1×1 Internal Loops Containing CA Mismatches. Biochemistry, (2010), 49, 1833-42. PMCID: PMC3106427

51.   Parkesh R, Fountain M, Disney MD NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1. Biochemistry (2011), 50, 599-601. PMCID: PMC3031998

50.   Tsitovich PB, Pushechnikov A, French JM, Disney MDA chemoenzymatic route to diversify aminoglycosides enables a microarray-based method to probe acetyltransferase activity.  ChemBioChem (2010), 11, 1656-1660.  Inside cover article. PMCID: PMC3016878

49.   Velagapudi SP, Seedhouse SJ, Disney MDStructure-activity relationships through sequencing (StARTS) defines optimal and suboptimal RNA motif targets for small molecules.  Angewandte Chemie International Edition, English (2010), 49, 3816-3818. PMCID: PMC3021749

48.   Tran T, Disney MDTwo-dimensional combinatorial screening of a bacterial rRNA A-site-like motif library: defining privileged asymmetric internal loops that bind aminoglycosides.  Biochemistry (2010), 49, 1833-1842. PMCID: PMC2846769

47. Disney MD, Lee MM, Pushechnikov A, Childs-Disney JL.  The role of flexibility in the rational design of modularly assembled ligands targeting the RNAs that cause the myotonic dystrophies.  ChemBioChem (2010), 11, 375-382.

46.   Seedhouse SJ, Labuda LP, Disney MD The Privileged Chemical Space Predictor (PCSP): a computer program that identifies privileged chemical space from screens of modularly assembled chemical libraries.  Bioorganic Medicinal Chemistry Letters (2010), 20, 1338-1343.

45.   Kumar A, Park H, Fang P, Parkesh R, Guo M, Nettles K, Disney MD.  Crystal Structure of the Triplet Repeat in Myotonic Dystrophy Reveals Heterogeneous 1×1 Nucleotide UU Internal Loop Conformations.  Biochemistry (2011), 50, 9928-9935. PMCID: PMC3218087

44.   Aminova O, Disney MD.  A microarray-based method to perform nucleic acid selections.  Methods in Molecular Biology (2010), 669, 209-224. PMID: 20857369

43.  Disney MD.  RNA targeting compounds and methods for making and using same.  US Patent Application No. 20080227213 (9/18/2008).

42. Lee MM, Childs-Disney JL, Pushechnikov A, French JM, Sobczak K, Thornton CA, Disney MD.  Controlling the specificity of modularly assembled small molecules for RNA via ligand module spacing:  targeting the RNAs that cause myotonic muscular dystrophy.  Journal of the American Chemical Society (2009), 131, 17464-17472.

41. Paul DJ, Seedhouse SJ, Disney MD.  Two-dimensional combinatorial screening and the RNA Privileged Space Predictor (RNA-PSP) efficiently identify aminoglycoside-RNA hairpin loop interactions.   Nucleic Acids Research (2009), 37, 5894-5907.

40. Pushechnikov A, Lee MM, Childs-Disney JL, Sobczak K, French, JM, Thornton CA, Disney MD. Ratinal design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: Application to myotonicmuscular dystrophy type 1 and spinocerebellar ataxia type 3. Journal of the American Chemical Society, (2009), 131,9767-9779.  Highlighted by Faculty of 1000.

39. Lee MM, Pushechnikov A, Disney MD.  Rational and modular design of potent ligands targeting the RNA that causes myotonic muscular dystrophy 2. ACS Chemical Biology (2009), 4, 345-355.

38. Labuda LP, Pushechnikov A, Disney MD. Small molecule microarrays of RNA-focused peptoids help identify inhibitors of a pathogenic group I intron.  ACS Chemical Biology (2009), 4, 299-307.

37. Aminova O, Paul DJ, Childs-Disney JL, Disney MD.  Two-dimensional combinatorial screening identifies specific 6’acylated kanamycin A- and 6’ acylated neamine-RNA hairpin interactions. Biochemistry (2008), 47, 12670-12679.

36. Barrett OJ, Pushechnikov A, Wu M, Disney MD.  Studying aminoglycoside modification by the acetyltransferase class of resistance-causing enzymes via microarray. Carbohydrate Research (2008), 343, 2924-2931.

35. Testa SM, Disney MD, Gryaznov SM, Turner DH.  Methods and Compositions for Inhibition of RNA Splicing.  US Patent No. 6958215 (issued on 10/25/2005).

34. Pushechnikov A, Disney MD.  Dihydro-2(3H)-thiophenimine hydrochloride.  Electronic Encyclopedia of Reagents for Organic Reagents (e-EROS).

33. Disney MD.  Book Review: Biochips as pathways to drug discovery.  ChemMedChem (2008), 3, 363.

32. Disney MD, Childs-Disney JL.  “Supra”molecular recognition of Galectin-1.  Chemistry & Biology (2007), 14, 1095-1097.

31. Disney MD.  Short-circuiting RNA splicing, Nature Chemical Biology (2008), 4, 723-724.

30. Disney MD, Labuda LP, Paul DJ, Poplawski SG, Pushechnikov A, Tran T, Velagapudi SP, Wu M, Childs-Disney JL.  Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners. Journal of the American Chemical Society (2008), 130, 11185‐11194.

29. Childs-Disney JL, Disney MD.  A simple ligation-based method to increase the information density in sequencing experiments used to deconvolute nucleic acid selections. RNA (2008), 14, 390‐394.

28. Disney MD, Barrett OJ.  An aminoglycoside microarray platform for directly monitoring and studying resistance.  Biochemistry (2007), 46, 11223-11230.

27. Childs-Disney JL, Wu M, Pushechnikov A, Aminova O, Disney MD.  A small molecule microarray platform to select RNA internal loop-ligand interactions. ACS Chemical Biology (2007), 2, 745-754.  Highlighted by Faculty of 1000.

26. Disney MD, Childs-Disney JL.  Using selection to identify and chemical microarray to study the RNA internal loops recognized by 6’-N-acylated kanamycin A.  ChemBioChem (2007), 8, 649-656.

25. Barrett OJ, Childs JL, Disney MD.  Chemical microarrays to identify ligands that bind pathogenic cells. ChemBioChem (2006), 7, 1882-1885.

24. Kehr JC, Zilliges Y, Springer A, Disney MD, Ratner DD, Bouchier C, Seeberger PH, de Marsac NT, Dittmann E.  A mannan binding lectin is involved in cell-cell attachment in a toxic strain of Microcystis aeruginosa.  Molecular Microbiology (2006), 59, 893-906.

23. Brun MA, Disney MD, Seeberger PH.  Miniaturization of microwave-assisted carbohydrate functionalization to create oligosaccharide microarrays.  ChemBioChem (2006), 7, 421-424.

22. Disney MD, Hook D, Namoto K, Seeberger PH, Seebach D.  N-linked glycosylated beta-peptides are resistant to degradation by glycoamidase A.  Chemistry and Biodiversity (2005), 2, 1624-1634.

21. Disney MD, Stephenson R, Wright TW, Haidaris CG, Turner DH, Gigliotti F.  Activity of Hoechst 33258 against Pneumocystis carinii, f. sp. muris, Candida albicans, and Candida dubliniensis.  Antimicrobial Agents Chemotherapy (2005), 49, 1326-1330.

20. Disney MD, Seeberger PH.  The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens.  Chemistry and Biology (2004), 11, 1701-1707. Highlighted by Faculty of 1000.

19. Disney MD, Childs JL, Turner DH.  Hoechst 33258 inhibits group I intron self-splicing by affecting RNA folding. ChemBioChem (2004), 5, 1647-1652.

18. Ratner DM, Adams EW, Disney MD, Seeberger PH.  Tools for glycomics: mapping interactions of carbohydrates in biological systems.  ChemBioChem, (2004), 5, 1375-1383.

17. Disney MD, Zheng J, Swager T, Seeberger PH.  Detection of bacteria with carbohydrate-functionalized fluorescent polymers. Journal of the American Chemical Society (2004), 126, 13343-13346.

16. Disney MD, Seeberger PH.  Carbohydrate arrays as tools for the glycomics revolution.  Drug Discovery Today: TARGETS (2004), 3, 151-158.

15. Disney MD, Seeberger PH.  Aminoglycoside microarrays to explore interactions of antibiotics with RNAs and proteins.  Chemistry-A European Journal (2004), 10, 3308-3314. Highlighted by Faculty of 1000.

14. Disney MD, Magnet S, Blanchard JS, Seeberger PH.  Aminoglycoside microarrays to study antibiotic resistance.  Angewandte Chemie International Edition (2004), 43, 1591-1594. Highlighted by Faculty of 1000.

13. Disney MD, Childs-Disney JL.  Methods for identifying ligands that target nucleic acid molecules and nucleic acid structural motifs.  US Patent Application No. 20080188377 (08/07/2008).  Patent pending.

12. Swager TM, Seeberger PH, Zheng J, Disney MD.  Polymers for Analyte Detection.  US Patent Application No. 60/610,743 (9/17/2004).  Patent pending.

11. Disney MD, Haidaris CG, Turner DH.  Uptake and Antifungal of Oligonucleotides in Candida and Saccharomyces.  Docket No.: 176/61430 (1-11033-03012).  Patent pending.

10. Turner DH, Childs JL, Disney MD.  Oligonucleotide Directed Misfolding of RNA (ODMiR).  US Patent Application No. 60/390,241; International Application No. PCT/US2003/019302.

9. Disney MD, Childs JL, Turner DH.  New approaches to targeting RNA with oligonucleotides:  Inhibition of group I intron self-splicing.  Biopolymers (2004), 73, 151-161.

8. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zucker M, Turner DH.  Incorporating chemical modification restraints into a dynamic programming algorithm for prediction of RNA secondary structure.  Proceedings of the National Academy of Sciences USA (2004), 101, 7287-7292.

7. Du H, Disney MD, Miller BL, Krauss TD.  Hybridization-based unquenching of DNA hairpins on Au surfaces:  Prototypical “molecular beacon” biosensors.  Journal of the American Chemical Society, (2003), 125, 4012-4013.

6. Disney MD, Haidaris, CG, Turner DH.  Uptake and antifungal activity of oligonucleotides in Candida albicans.  Proceedings of the National Academy of Sciences USA, (2003), 100, 1530-1534.

5. Childs JL, Disney MD, Turner DH.  Oligonucleotide directed misfolding of RNA inhibits Candida albicans group I intron splicing.  Proceedings of the National Academy of Sciences USA (2002), 99, 11091-11096.  Highlighted by Faculty of 1000.

6. Disney MD, Turner DH.  Molecular recognition by the Candida albicans group I intron: tertiary interactions with an imino G●A pair facilitate binding of the 5′ exon and lower the KM for guanosine.  Biochemistry (2002), 41, 8113-8119.  Highlighted by Faculty of 1000.

5. Disney MD, Matray T, Gryaznov SM, Turner DH.  Binding enhancement by tertiary interactions and suicide inhibition of a Candida albicans group I intron by phosphoramidate and 2′ O-methyl hexanucleotides.  Biochemistry (2001), 40, 6520-6526.

4. Disney MD, Haidaris CG, Turner DH.  Recognition elements for 5′ exon substrate binding to the Candida albicans group I intron.  Biochemistry (2001), 40, 6507-6519.

3. Disney MD, Gryaznov SM, Turner DH.  Contributions of individual nucleotides to tertiary binding of substrate by a Pneumocystis carinii group I intron.  Biochemistry (2000), 39, 14269-14278.

2. Disney MD, Testa SM, Turner DH.  Targeting a Pneumocystis carinii group I intron with methylphosphonate oligonucleotides:  Backbone charge is not required for binding or reactivity.  Biochemistry (2000), 39, 6991-7000.

1. Testa SM, Disney MD, Turner DH, Kierzek R.  Thermodynamics of RNA-RNA duplexes with 2- or 4-thiouridines:  Implications for antisense design and targeting a group I intron.  Biochemistry (1999), 38, 16655-16662.